Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement.
نویسندگان
چکیده
DNA replication licensing is now understood to be the pathway that leads to the assembly of double hexamers of minichromosome maintenance (Mcm2-7) at origin sites. Cell division control protein 45 (Cdc45) and GINS proteins activate the latent Mcm2-7 helicase by inducing allosteric changes through binding, forming a Cdc45/Mcm2-7/GINS (CMG) complex that is competent to unwind duplex DNA. The CMG has an active gate between subunits Mcm2 and Mcm5 that opens and closes in response to nucleotide binding. The consequences of inappropriate Mcm2/5 gate actuation and the role of a side channel formed between GINS/Cdc45 and the outer edge of the Mcm2-7 ring for unwinding have remained unexplored. Here we uncover a novel function for Cdc45. Cross-linking studies trace the path of the DNA with the CMG complex at a fork junction between duplex and single strands with the bound CMG in an open or closed gate conformation. In the closed state, the lagging strand does not pass through the side channel, but in the open state, the leading strand surprisingly interacts with Cdc45. Mutations in the recombination protein J fold of Cdc45 that ablate this interaction diminish helicase activity. These data indicate that Cdc45 serves as a shield to guard against occasional slippage of the leading strand from the core channel.
منابع مشابه
Dpb2 Integrates the Leading-Strand DNA Polymerase into the Eukaryotic Replisome
BACKGROUND The eukaryotic replisome is a critical determinant of genome integrity with a complex structure that remains poorly characterized. A central unresolved issue is how the Cdc45-MCM-GINS helicase is linked to DNA polymerase epsilon, which synthesizes the leading strand at replication forks and is an important focus of regulation. RESULTS Here, we use budding yeast to show that a conse...
متن کاملThe eukaryotic CMG helicase pumpjack and integration into the replisome
The eukaryotic replisome is α multiprotein machine that contains DNA polymerases, sliding clamps, helicase, and primase along with several factors that participate in cell cycle and checkpoint control. The detailed structure of the 11-subunit CMG helicase (Cdc45/Mcm2-7/GINS) has been solved recently by cryoEM single-particle 3D reconstruction and reveals pumpjack motions that imply an unexpecte...
متن کاملEukaryotic Origin-Dependent DNA Replication In Vitro Reveals Sequential Action of DDK and S-CDK Kinases
Proper eukaryotic DNA replication requires temporal separation of helicase loading from helicase activation and replisome assembly. Using an in vitro assay for eukaryotic origin-dependent replication initiation, we investigated the control of these events. After helicase loading, we found that the Dbf4-dependent Cdc7 kinase (DDK) but not S phase cyclin-dependent kinase (S-CDK) is required for t...
متن کاملStructure of human Cdc45 and implications for CMG helicase function
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals se...
متن کاملHow the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication
The eukaryotic replisome is a molecular machine that coordinates the Cdc45-MCM-GINS (CMG) replicative DNA helicase with DNA polymerases α, δ, and ε and other proteins to copy the leading- and lagging-strand templates at rates between 1 and 2 kb min-1. We have now reconstituted this sophisticated machine with purified proteins, beginning with regulated CMG assembly and activation. We show that r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 3 شماره
صفحات -
تاریخ انتشار 2015